A NOTE ON GROUPS WITH PROJECTIONS

Richard STEINER
University of Glasgow. Department of Mathematics. 15 University Gardens, Glasgow, Great Britain Gl2 8QW
Communicated by A. Heller
Received 27 October 1980

The purpose of this note is to strengthen one of the theorems on groups with projections proved by End in [1].

We recall the definitions of that paper. Let n be a natural number and let ω be $\{1, \ldots, n\}$. Let G be a group. An ω-structure on G is a family of subgroups $\left(G_{\alpha}\right)(\alpha \subset \omega)$ of G such that $G_{0}=\{0\}$ and

$$
[x, y] \in G_{\alpha \cup \beta} \quad \text { for } \alpha, \beta \subset \omega, x \in G_{\alpha}, y \in G_{\beta}
$$

($[x, y]$ denotes the commutator of x and y). The ω-structure $\left(G_{\alpha}\right)$ on G is said to be universal if the following condition holds: whenever $f_{\alpha}: G_{\alpha} \rightarrow H(\alpha \subset \omega)$ is a family of homomorphisms such that

$$
\left[f_{\alpha} x, f_{\beta} y\right]=f_{\alpha} \cup \rho[x, y] \quad \text { for } \alpha, \beta \subset \omega, x \in G_{\alpha}, y \in G_{\beta}
$$

then there is a unique homomorphism $f: G \rightarrow H$ such that

$$
f_{\alpha}=f \mid G_{\alpha} \quad \text { for } \alpha \subset \omega
$$

For any ω-structure (G_{α}) on G and any total ordering \leq of the subsets of ω, we have a summation function

$$
S^{s}: \prod_{\alpha \subset \omega} G_{\alpha} \rightarrow G
$$

given by the formula

$$
S \leq\left(g_{\alpha}\right)=\sum_{\alpha \subset \omega} g_{\alpha} \quad \text { for }\left(g_{\alpha}\right) \in \prod_{\alpha \subset \omega} G_{\alpha}
$$

(we write groups additively although they need not be commutative).
We shall prove the following result.
Theorem. Let $\left(G_{\alpha}\right)$ be an ω-structure on a group G, and suppose that the summation function $S^{s}: \prod_{\alpha \subset \omega} G_{\alpha} \rightarrow G$ is bijective for some total ordering \leq of the subsets of ω. Then the ω-structure $\left(G_{\alpha}\right)$ is universal.

This is a generalization of Theorem C of [1], which needs a restriction on the ordering \leq.

The title of this paper is explained by Theorem A of [1], which gives a family of projections on a group with a universal ω-structure.

The theorem is proved in the same way as Theorem C of [1] is proved in [1], 12(c); we use the following lemma, which is analogous to the conjunction of the lemmas in [1], 12(a) and 12(b).

Lemma. Assume the hypotheses of the theorem, and suppose that $f_{\alpha}: G_{\alpha} \rightarrow H(\alpha \subset \omega)$ are homomorphisms such that

$$
\left[f_{\alpha} x, f_{\beta} y\right]=f_{\alpha \cup \beta}[x, y] \quad \text { for } \alpha, \beta \subset \omega, x \in G_{\alpha}, y \in G_{\beta}
$$

Let $\left(a_{1}, \ldots, a_{k}\right) \in G_{\alpha(1)} \times \cdots \times G_{\alpha(k)}$ be any finite sequence of elements of the G_{α} 's. Then there is a sequence $\left(b_{1}, \ldots, b_{m}\right) \in G_{\beta(1)} \times \cdots \times G_{\beta(m)}$ such that

$$
\begin{aligned}
& \beta(1)<\beta(2)<\cdots<\beta(m) \\
& a_{1}+\cdots+a_{k}=b_{1}+\cdots+b_{m} \quad \text { in } G \\
& f_{\alpha(1)} a_{1}+\cdots+f_{\alpha(k)} a_{k}=f_{\beta(1)} b_{1}+\cdots+f_{\beta(m)} b_{m} \quad \text { in } H
\end{aligned}
$$

The argument of [1], 12(c) shows that the lemma implies the theorem, so we shall only prove the lemma. We take the commutator $[x, y]$ to be $x+y-x-y$ for $x, y \in G$. Given a sequence $\left(a_{1}, \ldots, a_{k}\right) \in G_{\alpha(1)} \times \cdots \times G_{\alpha(k)}$ we shall perform the following operations on it: replace two consecutive elements $(a, b) \in G_{\alpha} \times G_{\beta}$ by
(i) $(a+b) \in G_{\alpha}$ if $\alpha=\beta$,
(ii) $([a, b]+b, a) \in G_{\beta} \times G_{\alpha}$ if $\alpha \subset \beta, \alpha \neq \beta$,
(iii) $(b, a+[-a,-b]) \in G_{\beta} \times G_{\alpha}$ if $\beta \subset \alpha, \beta \neq \alpha$,
(iv) $(b,[-b, a], a) \in G_{\beta} \times G_{\alpha \cup \beta} \times G_{\alpha}$ if $\alpha \subset \beta$ and $\beta \subset \alpha$ are both false.
(Note that $[a, b] \in G_{\alpha \cup \beta}=G_{\beta}$ in (ii); similarly $[-a,-b] \in G_{\alpha}$ in (iii).) Clearly these operations do not change the sums $\sum_{i} a_{i}$ in G and $\sum_{i} f_{\alpha(i)} a_{i}$ in H. It is therefore sufficient to show that the operations can be used to change the given sequence of indices ($\alpha(1), \ldots, \alpha(k)$) to a sequence ($\beta(1), \ldots, \beta(m)$) with $\beta(1)<\beta(2)<\cdots<\beta(m)$.

We proceed as follows. Write P_{i} for
$\{\alpha \subset \omega: \alpha$ has cardinality $i\}$
for $0 \leq i \leq n$. We transpose elements of P_{1} with their neighbours by operations (ii)-(iv) until the elements of $P_{0} \cup P_{1}$ occur in the order given by \leq; they may be repeated, and they may be mixed arbitrarily with elements of $P_{2} \cup P_{3} \cup \cdots \cup P_{n}$. Operation (iv) puts an extra element into the sequence as well as performing the desired transposition, but the extra element will be in $P_{2} \cup P_{3} \cup \cdots \cup P_{n}$, so it does not matter. After this we transpose the elements of P_{2} with their neighbours in the same way until the elements of $P_{0} \cup P_{1} \cup P_{2}$ appear in the correct order. This may put in extra elements, but they will be in $P_{3} \cup \cdots \cup P_{n}$, so they do not matter. We proceed in
this way until all the elements appear in the correct order. The sequence then has the form $(\gamma(1), \ldots, \gamma(l)$) with $\gamma(1) \leq \gamma(2) \leq \cdots \leq \gamma(l)$. We now use operation (i) to eliminate the repeats, and so arrive at $(\beta(1), \ldots, \beta(m)$) with $\beta(1)<\beta(2)<\cdots<\beta(m)$ as desired.

This completes the proof.

Reference

[1] W. End, Groups with projections and applications to homotopy theory, J. Pure Applied Algebra 18 (1980) 111-123.

